Data-Based Optimal Smoothing of Orthogonal Series Density Estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal series density estimation

Orthogonal series density estimation is a powerful nonparametric estimation methodology that allows one to analyze and present data at hand without any prior opinion about shape of an underlying density. The idea of construction of an adaptive orthogonal series density estimator is explained on the classical example of a direct sample from a univariate density. Data-driven estimators, which hav...

متن کامل

Optimal Spline Smoothing of FMRI Time Series

Smoothing splines with generalized cross-validation parameter selection (GCV-spline) provide a method to find an optimal smoother for an fMRI time series. The purpose of this study was to compare the variance of parameter estimates and the bias of the variance estimator for a linear regression model smoothed with GCV-spline and the low-pass filter in SPM99 (SPM-HRF). The mean bias with the SPM-...

متن کامل

Consistency of orthogonal series density estimators based on grouped observations

The aim of this note is to indicate that nonparametric orthogonal series estimators of probability densities retain the mean integrated square error (MISE) consistency when observations are grouped to the points of a uniform grid (prebinned). This kind of grouping is typical for computer rounding errors and may also be useful in data compression, before calculating estimates, e.g., using the FF...

متن کامل

Nonlinear Orthogonal Series Estimates for Randomdesign Regression

Let (X; Y) be a pair of random variables with supp(X) 0; 1] and EY 2 < 1. Let m be the corresponding regression function. Estimation of m from i.i.d. data is considered. The L 2 error with integration with respect to the design measure (i.e., the distribution of X) is used as an error criterion. Estimates are constructed by estimating the coeecients of an orthonormal expansion of the regression...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1981

ISSN: 0090-5364

DOI: 10.1214/aos/1176345341